Europe To Humanity: It’s Time To Astro-Probe The Jovian System

Posted by on May 6, 2012 in Callisto, Europa, Europe, Ganymede, Jupiter | 0 comments

Forget mapquesting Ganymede! It looks like Europe will spend a billion euro’s in order to launch JUICE (which stands for JUpiter ICy moon Explorer) find out more about Jupiter’s lunar children two decades from now (2030 for those who want to know).

ESA plans to pack the solar-powered spacecraft with a suite of instruments, which will collect high-resolution pictures as well as data on the moons’ chemical compositions, magnetic environments, and surface features.

During its roughly three-year mission, JUICE will perform two flybys of Europa, examining that moon’s icy crust in search of sites for future exploration, perhaps by a lander.

Then, after a dozen flybys of Callisto, the spacecraft will slip into orbit around Ganymede in 2032 and will study Jupiter’s largest moon for nearly a year.

“The ice shells of Ganymede and Europa serve as a window to the oceans below,” Hand said. That’s because, as in the Arctic on Earth, the surface ice is most likely born from oceans below, and so will carry information about the liquid water’s chemical composition. (National Geographic)

JUICE will also observer the relationship Jupiter has with the three Jovian moons (Callisto, Europa and Ganymede) as well as analyze each world for subterranean oceans.

Unfortunately humanity will be unable to visit Europa due to Jupiter’s radiation belts, although JUICE could help us identify potential spots to establish outposts upon Callisto as well as Ganymede (the latter which could be used as the bread basket of the Jovian system thanks in part to it’s magnetic field).

While JUICE’s purpose is to help us discover alien life upon other worlds, it’s launch and Jovian encounter could help prepare our species for spreading terrestrial life upon Jupiter’s outer Galilean moons.

Video Hat tip: Spaceports

Read More

The 7 (Future) Wonders Of The Solar System

Posted by on Nov 20, 2009 in Asteroids, Blog, Callisto, Future, Ganymede, Jupiter, Mars, Mercury, Moon, Pluto, Saturn, Solar Essay, Titan, Uranus | 5 comments

solarsytemmontage

Two hundred years after the first man and woman graced the plains of Mars, humanity is still isolated to just one star system.

Despite an intense campaign by the Alpha Centauri Society, humans overall have little desire to travel between stars due to cost and technology.

Although this rowdy species has yet to claim their interstellar inheritence, they have transformed their solar playground around them, producing seven wonders that will go down in galactic history.

The Silver Stripes of Mercury

Originally conceived as a penal colony, industrial corporations decended upon Mecury after discovering large deposits of minerals and metals upon its surface.

While its close proximety to the Sun has made Mercury famous for its Magsail races, it’s the billions of solar panels that encircle the planet on the surface (in “neat” rows varying between 1-10 km wide) that make this world an engineering wonder.

The planets 100,000 residents use the energy produced during the Mecurian day to power the ores and cities on the dark side of the planet when it’s safe to work above ground (due to the Sol Star’s radiation).

The Bio Gardens of Luna Maria

terraformedmoon

(Image Credit: Daein Ballard)

Officially designated Luna Maria after the failed Lunar revolution (condemned by government and religious leaders on Earth), Luna Maria has transformed its appearence from a white barren wasteland into a “second Eden,” which now boasts 60 million residents.

After generating enormous wealth from exporting oxygen throughout the Sol System, Luna Maria has erected hundreds of thousands of enormous, interconnected biospheres upon 87% of its surface, giving Luna Maria the appearence of a miniture Earth from space.

Luna Maria’s artificial planetary magnetic field (the only one in existance due to cost) has allowed the moon to use bees instead of ants to pollinate its crops, producing gardens unrivaled throughout the star system (due to it’s 16.7% Earth norm gravity).

The Phobian Skyhook (Or Martian Space Elevator)

marsspaceelevator

(Image Credit: Steve Bowers)

After failed attempts to construct a space elevator on Earth (due to infrequent yet devestating global wars), humanity was finally able to construct a skyhook on the Martian moon of Phobos.

This engineering feat has enabled Mars to inexpensively export its vast supply of water throughout the asteroid belt and inner Sol System, bringing mixed prosperity to the 8 million residents of Mars.

While the red planet’s globacanes prevent a space elevator touching the ground from ever being built, the Phobian Skyhook is an impressive site to see when orbiting this crimson world.

The Jovian Jewel Callisto

Coruscant_guilpan

(Image Credit: Thomas Guilpain)

Originally established as a way station world during the Helium-3 rush (in which thousands sought to harvest the isotope for profit), Jupiter’s moon Callisto attracted millions of residents after being declared the safest radiation world after Earth.

Using its brother moon Ganymede as an agricultural world (due to it’s natural magnetic field), Callisto developed the means to feed its enormous population of 750 million, who built cities covering 96% of the entire surface.

Using robots to harvest radioactive materials from both Io and Europa to power its cities (as they are too dangerous to be visited by humans), Callisto brilliantly shimmers in the dark whenever it falls underneath Jupiter’s shadow.

The Beacon Towers Of Titan

Often declared as “an astronomer’s hell” due to it’s cloudy covering, Saturn’s moon Titan is considered a musicians heaven due to the richer sound that’s a result of it’s atmospheric presure and composition.

While Titan eventually became wealthy by exporting methane and ethane to the Sol System, the cloudy moon was extremly difficult to navigate as its crust rested upon a methane/ethane mix, causing it to “slightly drift” and rotate due to the worlds strong winds.

Since traditional forms of GPS were utterly useless, numerous 1.5 kilometer tall Beacon towers (beaming out intense radio waves) were constructed thoughout the moon, giving its 4 million residents a faux GPS system (making travel and commerce throughout the world a lot easier for all).

The Floating Cities Of Uranus

cloudcitystarwars

(Image Credit: Star Wars, original artist unknown)

Originally built by various Terrian corporations to harvest methane and helium-3 within the clouds of this ice giant, these floating cities soon became tourist attractions for the more affluent seeking to escape the low gravity life of lunar worlds orbiting gas giants.

These giant orbital space stations boast near Earth gravity, and mimic the daylight cycle on Earth by floating around the enormous ice giant which its residents call home.

While estimates put the total population between 80,000 wealthy souls, these floating cities are known to have hundreds of thousands of visitors pass through their space ports each standard year, many of them heading towards the Neptunian Lagrange asteroid fields.

The Plutonian Ice Bridge (aka Solar Bridge of Pluto And Charon)

Boasting no more than 50,000 brave souls, this world was originally settled upon by government scientists from various Terrian, Martian and Callistian nations seeking to conduct experiments considered too hazardous (and/or controversial) on their respective home worlds.

While the world and its smaller moon hold little value (both visually and economically), one interesting feature of this binary system is the solar bridge connecting both Pluto and Charon together.

This engineering feat was originally built to reduce the cost of travel between both worlds via rockets although conspiracy theorists have their own conclusions for its existence (none of which will be cited here).

What about Earth?

Although the human race has made great strides in establishing colonies throughout the Sol System, most of its 20 billion individuals reside on the birth planet Earth.

While Earth is still home to some of the greatest scientific discoveries known to man (and women), there are no great engineering wonders to speak of, aside from the beautiful beaches, mountains and vast blue oceans that distinguish our home world from every other sphere that orbits our star.

Update (11/24): Corrected grammatical errors. Thanks!

Read More

One Solar Space Power To Rule Them All?

Posted by on Dec 10, 2008 in Asteroids, Blog, Callisto, Ceres, Mars, Moon, Solar Essay, Titan | 7 comments

Image Credit: Loony Tunes

Note: Article inspired by NASA Watch, The Planetary Society and 21st Century Waves


Warning: This is an extremely long article, so you may want to grab a quick snack as you read through this post.

Anyone who has ever played board games such as Risk and Monopoly knows that the overall purpose of the game is for one player to dominant the board by either taking territory or securing financial resources ahead of their rivals.

The same rule also applies to the final frontier as evidenced by the space race emerging in Asia, as well as between the US and China.

While every nation probably has their own “road map” for conquering the final frontier, there are no less than five critical locations (ranging from asteroids to dwarf planets to even moons) that a space faring nation must secure if they desire to remain (or become) a solar space power in our star system.

First Stop: Luna

Orbiting a mere light second away from Earth, the Moon could easily be described as humanities second home due to its proximity towards our birth world.

Although the lunar surface may lack water (at least in abundance), its white regolith can be “easily” converted into breathable oxygen, allowing our species to survive beyond our earthen cradle without the need to constantly borrow air from our home world.

Often seen as free on planet Earth, oxygen in space will be literally worth its “weight” in gold, and any nation that can find a way to inexpensively produce lunar oxygen will have an advantage later on over its rivals (and may even be able to sell the precious gas for a profit).

While its oxygen rocks could enable humanity to live off world, its reduced gravity may make the tiny sphere appealing to asteroid miners seeking out near earth objects (aka NEO’s).

Since micro-gravity has a way of eroding bones and muscles, destroying immune systems, weakening hearts and strengthening deadly bacteria, asteroid miners may prefer to live lunar side (with frequent trips to mine these NEO’s), than to spend the majority of their time floating next to a space rock in micro-gravity.

Even though a space faring nation (both current and aspiring) could develop a sustainable presence around the Moon (and nearby space rocks) due to its resources and location, it may be wise to travel beyond Earth’s orbit towards more promising worlds (in order maintain its status a future space power).

Next Stop: The dwarf planet Ceres

Although some would consider it “insane” to skip the red planet, heading to Ceres first will ensure that a future space power has the resources to fund its expansion (note: despite the fact that doing so means sacrificing the prestige of sending the first man or woman to Mars).

Ceres strategically orbits within the metal rich region of the asteroid belt, making this dwarf planet prime real estate (at least to asteroid mining corporations).

Any nation establishing a colony on Ceres would be able to send teams of astronauts to secure nearby metallic space rocks as their own, potentially selling them to future allies or harvesting the mineral resources for themselves.

While the dwarf planet lacks any resources of its own, Ceres is suspected of hosting more “fresh water” than Earth itself, which would enable future asteroid minors to potentially grow their own food off world without depending on frequent supplies from Earth.

It would also allow Ceres to act as a interplanetary rest stop between Mars and Jupiter, not to mention a safe haven as well (just in case the asteroid belt becomes infested with space pirates).

Since most of humanities attention will probably be focused on Mars after the Moon, there will probably be very little competition establishing a dominant presence on Ceres (if not conquer it entirely for themselves).

Third Stop: The Martian moon called Phobos

Despite its popularity in science fiction, Mars will probably attract very few visitors due to the extreme difficulty in landing large payloads on the surface of the red planet.

Coupled with the fact that Mars lacks major resources of any kind (note: at least that we know of), the crimson world may only be inhabited by scientists, various cults and individuals disillusioned by Earthen (and Lunar) governments.

Even though the red planet may not be of much economic worth (at least initially), one of its asteroid moons Phobos could be converted into an enormous space station in order to make it easier to process metals harvested from the asteroid belt.

Since the sunlight on Mars is much stronger than in the asteroid belt, a future mining corporation could use the Sun’s rays to melt asteroid metals en mass before exporting them towards Earth (and Luna).

Although working on an asteroid moon may be profitable, living upon one may not due to the side effects of micro-gravity.

Even though a future miner could always counter the effects of micro-gravity with various drugs and electronic shocks, it may be wiser to settle upon the red deserts below as Mars’s gravity is approximately 38% Earth norm.

In order to reduce the cost of transporting personal (and equipment) to and from the Martian surface, a future space power may need to construct an “orbital space elevator“ on the near side of Phobos.

While constructing this would ultimately open up Mars to the rest of humanity (which a future space power could charge a fee for rivals to use), it would also allow them to import water from the Martian surface (instead of depending upon either Earth or Ceres for supplies).

Fourth Stop: The Jovian moon Callisto

Often regarded as a dead world, the Jovian moon Callisto may be of high worth to any space faring nation, due to the fact that it is one of the few radiation safe worlds in our star system.

Even though Mars and the Moon may have “celebrity status” throughout our solar system, neither of the worlds has a global magnetic field to protect their spheres from the wrath of the Sun.

Callisto on the other hand is not only protected by Jupiter’s magnetic field, but it orbits just beyond the gas giant’s radiation belt, enabling future colonists to raise families (and pets) upon this world without fear of growing a third eye ball.

While Callisto may not have any immediate value outside of being a midway point between the inner solar system and Saturn, establishing an outpost here would enable a future space power to “easily explore” its brother Ganymede.

Although Ganymede’s orbit takes it into the heart of Jupiter’s radiation belts, a properly shielded colony could use Ganymede’s global magnetic field to raise an abundance of crops with the help of bees (instead of relying upon ants who may not need a magnetic field to pollinate our green friends).

While it would probably be impossible for one space faring nation to conquer both of these worlds for themselves, conquering these moons early on (especially Callisto) could give a rising space power significant influence over the future of the Jupiteran system (not to mention the next gas giant as well).

Last Stop: The methane moon called Titan

Even if humanity finds a way to harvest the helium-3 locked away within Luna’s crust (not to mention the atmosphere of Uranus), the cost of mining it m
ay put it out of reach for most interplanetary commercial spacecraft.

Since supplies of Uranium and Plutonium could easily become unavailable for space travel (as many nations on Earth may need them for energy or defense), finding an inexpensive alternative could determine whether or not a space faring nation thrives or merely survives in the depths of our star system.

One way to guarantee that a future space power has the neccessary fuel to maintain its fleet (at least inexpensively) is to establish outposts near Titan’s methane lakes (which may contain an abundance of methane/ethane within them).

While it would not be surprising to see Titan heavily colonized in the fairly distant future (by various countries), securing this world early on would enable a space faring country to establish tremendous influence throughout the solar system (or at least within the ringed system of Saturn).

What about the other worlds?

Although their are plenty of other interesting worlds ranging from the burning crust of Mercury to the frozen wasteland of Neptune’s moon Triton, these worlds may not attract that much interest in the future (at least as far as we can tell right now).

Even though everyone probably hopes that humanity would put aside their differences and explore the final frontier in peace, six thousand years of recorded history seems to hold a dim view regarding this viewpoint (as one can glimpse the wars that have raged upon our planet).

Whether or not humanity decides to conquer every sphere and space rock within our solar system only time will tell.

But either way, these four worlds (plus one asteroid moon) may be the key that determines which space faring nation not only dominates our solar system, but perhaps guides us unto the next one as well.

Read More

Radiation Safe Worlds

Posted by on Mar 5, 2008 in Blog, Callisto, Ganymede, Health, Jupiter, Mars, Saturn, Solar Essay, Titan | 2 comments

Of the 83 colony worlds that dance and prance around our golden star, only six worlds (excluding our home planet) hold the potential of being future homes, nine if you include Mercury, Pluto and Charon.

Despite the fact that future technology could eventually open up all of these worlds for human habitation, only a few of them may attract “the masses” after the first person sets foot upon their dusty soil due to the “evil R word”–radiation.

Contrary to the various rumors, taking heavy doses of radiation does not turn one into the Hulk, one of the members of the Fantastic Four or Spider Man via a radioactive spider bite.

Radiation, whether cosmic or solar has the potential of seriously roasting you alive, if not turning one into a vegetable.

Even though humans can tolerate “various degrees” of radiation, our bodies seem to be quite content with the level of background radiation our species receives on planet Earth, which is about 0.35 REM’s (aka Roentgen Equivalent Man) a year.

Higher doses of radiation can prove to be fatal towards future colonies, and some researchers do not recommend levels above 50 REM within a year or 25 REM during a 30 day period as it can lead towards some serious side affects (as highlighted in the chart below).




While radiation can be countered by using water, lead and aluminum, parents may be hesitant to breed upon foreign planets and moons (let alone raise kids upon them) if it will result in their children acquiring serious birth defects.

In order to determine which worlds are “family friendly,” one only has to look at how much radiation a world receives to determine whether or not it is suitable for large populations or should be left alone for industrial space companies.

Starting out with Mars, one often dreams about metropolises dotting the surface of that crimson sphere. While Mars may hold much promise for future colonies, its annual dose of 15-20 REM may give some settlers second thoughts.

While future Martians may be able to combat the threat of radiation by building cities within its lumpy magnetic field, the red planet as a whole may not spawn dense cities until a globe sized artificial magnetic field can be constructed.

Moving outward to the Jovian system future space settlers may find more fortune living on Jupiter’s moon Callisto. Orbiting just outside of its angry parents radiation belt, Callisto receives approximately 0.01 REM a day (or about 3.65 REM a year).

Coupled with its prime location in the outer solar system, Callisto may outpace its Martian rivals population wise, and may be second only to Earth as far as future inhabitants go.

Unfortunately Jupiter’s other lunar daughters do not fare as well as Callisto, with all three of these worlds (Ganymede, Europe, Io) bathed in Jupiter’s harsh radiation belt, putting them at a disadvantage compared to their much colder, “uglier” sister.



Traveling further outward towards Saturn, one may find it strange that humans may call the smog world of Titan home sweet home. While its surface may be hidden from the human eye, its atmosphere may be thick enough to protect residents from both solar rays as well as Saturn’s radiation belts.

Even though there are other worlds such as Luna (aka Earth’s moon), Ceres, and even Ganymede that may eventually be civilized by our ever growing race, these worlds may not conquered right away due to the “invisible killer” lurking in the shadows.

While it would not be surprising to see scientists and industrial corporations setting up shop on these hostile worlds, the bulk of humanity may choose to remain on these radiation safe worlds until over population forces them to conquer these overlooked spheres roaming silently among the stars.

Read More

Which Worlds Should We Colonize First?

Posted by on Sep 5, 2007 in Blog, Callisto, Ceres, Ganymede, Jupiter, Mars, Moon, Saturn, Solar Essay, Titan | 3 comments


Our race is indeed blessed to inhabit a fertile world that orbits our favorite star, Sol. With 83 colony worlds dancing around our yellow sun, one can only imagine all the possibilities of our brave race inhabiting them all.

Of course, reality has a way of correcting our fantasies, and just as humanity refuses to dwell near or upon certain mountains, canyons and islands, so our young species may opt to skip over certain worlds in order to inhabit others.

So which worlds hold the promise of housing tomorrows children?

The first (and probably most obvious) world earth’s kids may call home is the moon (aka Luna). The moon will be humanities first stepping stone way from Earth, and will most like jump start our journey into space, as its soil may contain valuable resources that can pay for all the fancy equipment needed to survive off world.

Skipping Earth’s nearest neighbor would probably be disastrous, as our sensitive public is barely able to handle any “boo boo’s” that happen in the solar abyss, much less a fatality. If terraforming ever became a reality, the moon would be a prime candidate for another Earth, as it already inhabits the “Goldilocks zone.”

Journeying outward, our dusty neighbor Mars would come into play. Despite lacking resources of its own to attract businesses upon its crimson soil, Mars does hold an abundance of water which would make a human settlement somewhat possible upon its rusty surface.

(Video: A visual of what Mars would look like if a large portion of its ice water melted and flooded the planet. Credit: NASA)

Mars is also conveniently located near the asteroid belt, which could help turn this barren world into an industrial paradise. Although other worlds (such as Earth) could always mine the asteroid belt with their own ships, it may be easier (and cheaper) to outsource that task to the Martians, the way many American business outsource their “sneaker and jacket making” to China.

Expanding further throughout the solar system, dwarf world Ceres would come into play. Thought to hold an abundance of water beneath its surface, Ceres could easily serve as a way station, supplying crews with water and fuel in the middle of the asteroid belt.

Entering the realm of the Jovian giant Jupiter, humanity would probably end up settling on Callisto. Not only does this heavily cratered moon harbor life necessities (such as CO2 and water), but it could also serve as a gateway towards the other gas giants.

Although Callisto may play a crucial role in our quest to colonize our star system, its bigger brother Ganymede may end up becoming the Jovian favorite, and perhaps even the prime world of the gas giants.

Entering our last stop would be Saturn’s Titan, a world believed to contain multitude of methane lakes. Although Titan’s methane weather cycle may be worth billions, its unique environment may become the attraction of the solar system, as its air pressure may make life very interesting for sports enthusiasts, artists and even musicians.

Of all the worlds that orbit our star system, these six worlds will probably be illuminated by the lights of future cities upon its surface.

But what about the other 76 worlds that grace our star system? Are not they worthy of being called home by future residents?

Unfortunately many of these other worlds will probably not be settled due to various reasons (at least voluntarily), although you will have to wait until next week to find out why most of these worlds will probably be skipped by our human race in our quest to colonize the stars.

Note: Due to lack of time images (an
d video) will be added later.

Update: Added video and images, as well as broke up last paragraph.

Read More

Jupiter's Callisto: Gateway To The Gas Giants

Posted by on Aug 6, 2007 in Blog, Callisto, Jupiter, Solar Essay | 4 comments


If scientists are unable to develop faster than light or wormhole technology by the 22nd Century, humanity may find themselves using gravitational assistance in order to travel throughout our solar system.

But in order to reach these distant gas giants alive (or at least moderately healthy), humanity may need a way station to resupply on food, supplies and oxygen.

Since the Jovian king (aka Jupiter) has been frequently used to fling satellites across the gulf of space, establishing a colony inside its domain may be the next logical step for conquering the outer solar system–with Callisto being the key.

Callisto orbits its Jovian parent at a distance of almost 2 million kilometers. Unlike its bigger brother Ganymede, Callisto lacks a well defined magnetic field, having to instead rely upon “daddy Jupiter” for protection.

Orbiting well beyond the wrath of Jupiter’s radiation belts, Callisto lies in a relatively quiet radio zone. With its surface lacking some of the more “interesting” features such as volcano’s and enormous mountain ranges, this tranquil world provide a stable (and safe) habitat for future colonists. Callistian residents would also be in the position to settle Ganymede, as well as establish scientific outposts upon the ice world Europa.

Callisto also harbors water and CO2 ice upon its surface, which would enable future colonies to not only grow food and create fuel for not only themselves, but also for way faring space travelers. This would allow future explorers to easily replenish their supplies, and then use Jupiter’s gravity to slingshot towards other planetary systems.

Having a similar scenario as Mars, Callisto’s location in the solar system would enable this lunar world to establish itself as an interplanetary pit stop, ensuring a vital economy based mainly on trade instead of vital resources.

Conquering this heavily cratered moon would provide yet another stepping stone for humanity, allowing our species to slowly (but surely) spread our population throughout our “tiny” star system.

Read More