Saturn’s Icy Moon Needs A Geothermal Power Plant

Posted by on Mar 10, 2011 in Enceladus, Energy, Saturn | 0 comments

Orbiting a gas giant that is over a billion kilometers away from the Sun, settlers upon Saturn’s moon Enceladus do not have the option of powering future outposts via solar panels (as sunlight is rather faint at that distance).

While future colonists could always break down water ice into hydrogen and oxygen, it might be wiser for residents to establish geothermal power plants upon Enceladus’s surface instead.

Data from Cassini’s composite infrared spectrometer of Enceladus’ south polar terrain, which is marked by linear fissures, indicate that the internal heat-generated power is about 15.8 gigawatts, approximately 2.6 times the power output of all the hot springs in the Yellowstone region, or comparable to 20 coal-fueled power stations. This is more than an order of magnitude higher than scientists had predicted, according to Carly Howett, the lead author of study, who is a postdoctoral researcher at Southwest Research Institute in Boulder, Colo., and a composite infrared spectrometer science team member. […]

It has been known since 2005 that Enceladus’ south polar terrain is geologically active and the activity is centered on four roughly parallel linear trenches, 130 kilometers (80 miles) long and about 2 kilometers (1 mile) wide, informally known as the “tiger stripes.” Cassini also found that these fissures eject great plumes of ice particles and water vapor continually into space. These trenches have elevated temperatures due to heat leaking out of Enceladus’ interior. (Astrobiology Magazine)

Since Enceladus’s orbits within Saturn’s radiation belts, residents will need a way to power their artificial magnetic fields in order to avoid being microwaved by the sixth planet from the Sun.

Establishing several geothermal power plants upon the surface could help a future outpost not only power the technology required for their survival, but help them avoid relying upon non-renewable nuclear reactors (or even frequent methane shipments from Titan).

Image: NASA’s Cassini spacecraft, shows how the south polar terrain of Saturn’s moon Enceladus emits much more power than scientists had originally predicted.

Credit: NASA / JPL / SWRI / SSI

Read More

Will Geothermal Energy Power Our Solar System?

Posted by on Sep 3, 2008 in Blog, Charon, Dione, Enceladus, Energy, Mars, Solar Essay, Tethys, Triton, Video | 4 comments

Image Credit:

Regardless whether one intends to dwell upon a dusty world, or an icy one, living on another planet, moon, or dwarf planet is going to require energy. Without a dependable power source, off world settlements will become nothing but fantasy, regulated to the imaginations of Star Wars, Star Trek and Serenity.

While a few worlds such as Mercury, Luna (aka the Moon) and Saturn’s Titan are blessed with an abundance of energy in the form of solar energy, helium-3 and methane-ethane lakes, respectively, most of the other spheres that dance around the sun (or their respective planets) seem to lack an ample supply of energy.

Without an lush supply of energy nearby, colonists living on other worlds will be forced to import energy from abroad, making these outposts not only expensive, but also small (as increased energy demand may make large cities unreasonable).

In order for our species to truly create independent colonies elsewhere, we may have to drill down beneath the soil in order to acquire the neccessary energy to power our future interplanetary cities.

Despite the fact that this technology is a little over a century old, geothermal energy has the potential to not only power our own home world, but the other globes that “roam” the vacuum of space as well.

For those unfamiliar with the technology, a geothermal power plant basically uses heat from the Earth’s core to turn water (or a “watery mix”) pumped from above into steam. This steam in turn spins the turbine engines, creating electricity for nearby communities to use.

A geothermal power plant can also pump up hot water trapped below, as in the case of the Calpine Corporation’s geyser power plant.

While the technology may not be as glamorous as solar power satellites, it does have the potential of fueling our energy dependent world.

(Video: Scientists explaining how geothermal energy works, as well as its potential. Credit:

While this technology is promising, one may wonder whether or not this technology would be feasible off world. After all, in order for geothermal power to have any relevance, it would have to reside on a world that is not only somewhat geologically active, but also contains water (or another liquid substitute) to turn the turbine engines.

Fortunately for our species, it seems that most of the worlds in our solar system seem to be blessed with both.


Upon first glance, the surface of the red planet appears to be (for lack of a better word) dead. While boasting the largest volcanoes in our solar system, the crimson globe apparently changes little, aside from a “global-cane” that covers the surface every six (earthen) years.

Despite its passive appearance, the Martian depths may be more active than we think beneath the surface, as evidenced by its semi-active core that seems to be generating a “lumpy magnetic field” that barely pops up above the surface (in some spots).

(Image: Artistic drawing of Martian geysers, Credit: Arizona State University / Ron Miller)

Mars also is known to host geysers in its southern pole, which may indicate that the red planet may a lot warmer underneath than we can imagine. Combined with the abundance of water, Mars may become fertile ground for future geothermal power plants.


With its parent world orbiting almost
780 million kilometers
away from the Sun, solar power is not an option for any future colony settling on Jupiter’s largest moon.

Boasting a global magnetic field which is ironically three times larger than the planet Mercury, a future outpost on Ganymede may be a prime candidate for a geothermal plant.

While future “Jupiterans” would have to live within “aquarium houses” in order to survive the intense radiation surrounding the moon, their ability to “tap” into the Jovian moons center, providing enough energy to turn this frozen globe into a second Earth.

Saturn’s Icy Moons

Despite its size, the tiny ice world of Enceladus contains geysers that are spewing icy crystals above its surface.

While scientists remain baffled on how such a tiny world can contain a core warm enough to produce geysers on top, this tiny world could become a prime candidate for a geothermal power plant (by tapping into the “warm crevices” beneath).

(Video: NASA highlighting geysers discovered on Enceladus, Credit: NASA, via Windows to the Universe)

But Enceladus is not the only ice world orbiting Saturn with geysers. Last year scientists discovered that both Tethys and Dione are also spewing ice particles into space, which may hint toward a warmer than anticipated core underneath.


Often known for its retrograde orbit around Neptune, Triton may become a major settlement in the future by harvesting helium-3 from the atmosphere of its paternal planet.

But before colonists can exploit the blue gas giant for profit, they will need to find a way to acquire energy upon that frozen world. Fortunately, Neptune’s “favorite son” does boast nitrogen geysers, whose erupting pressure may help keep an advance turbine engine spinning (thus keeping “the lights on” for a future colony.


While the debate rages on whether or not its “bigger brother” can join the planet club, scientists suspect that Pluto’s moon Charon may also have geysers on its surface, which could point towards a warmer core underneath.


Even though off world colonies will probably have to adjust their technology in order to make geothermal power plants feasible (perhaps by using the geyser pressure from the worlds to turn the turbine engines instead of simply using steam heat), future settlements may consider it more reasonable to power their cities from energy below, rather than importing it from afar.

Read More

Is Saturn's Enceladus Spewing Water Or Clathrate?

Posted by on Dec 14, 2006 in Blog, Enceladus, Saturn, Space Phenomena | 0 comments

One of the geysers of the ice moon Enceladus (nick named “cold faithful”) may not be spewing out water as previously thought. Scientists have discovered new chemicals within the spray, leading to researchers to think that Enceladus may have more under the surface than H20.

( “A problem with this model is that 10 percent of the plume consists of the gases carbon dioxide, nitrogen and methane,” said lead study author, Susan Kieffer, a researcher at the University of Illinois at Urbana-Champaign. “You might get a carbon dioxide-driven liquid geyser there, but you can’t put this much nitrogen and methane into liquid water at the low pressures found inside Enceladus.”

Nitrogen and methane, almost insoluble in water, are highly soluble in clathrate. When exposed to vacuum, the gas molecules burst out, ripping the ice lattice to shreds and carrying the fragments away.

Although probably a century away from human exploration, Enceladus is proving to be an interesting moon to explore. If the methane concentration is high enough, it may not be surprising in the future to find its surface dotted with “ice rigs” pumping fuel towards the surface (although you get some protests from space environmentalists).

Read More